

HELIUM REFRIGERATION CONSIDERATIONS FOR CRYOMODULE DESIGN

Venkata<u>Rao</u> Ganni Jefferson Lab

Introduction

- ADS is presently based on SRF cavities operating at 2-K, which requires specialized helium refrigeration systems
 - They are cost intensive to produce and to operate.
- Some basic concepts and ideas for Cryomodule design to minimize the input power to the refrigeration system are discussed here

Issues for Thought

Cost of Energy

- Could ignore inefficiencies in the past, but not anymore!
- Accumulation of system inefficiencies, due to,
 - Scaling up of the systems
 - A culture of duplication and scaling
 - (i.e., 'give me another one of those but larger')
 - Inefficiencies of the earlier designs were scaled too!
 - Sub-systems mismatch
 - Boundaries between the sub systems
 - CM, Distribution, Refrigeration system
 - What are the correct shield temperatures and their match to the refrigerator design
 - Lack of component development for 2K applications
 - Connection designs between the sub systems; e.g., bayonets & valves
 - Efficient sub-atmospheric compression systems

Outline

- Performance definitions
- "Quality" of energy
- Thermal shields & intercepts
- Helium properties below 4.5-K
- 2-K Refrigeration process
- 2-K Process improvements
- Cryomodule design
- Cryomodule production
- JLab helium distribution system
- SNS helium distribution system
- Generalized distribution system
- Conclusions

Performance Definitions

- (Physical) exergy per unit mass is defined as,
 - $\varepsilon = h T_0 \cdot s$
 - where, T_{θ} is the reference temperature; i.e., environmental temperature; say, 300 K
 - exergy (ε) is an intrinsic fluid property (...like *h* and *s*)
- The minimum input power theoretically required; or conversely, the maximum power output theoretically possible is,

$$\Delta \mathbf{E} = \mathbf{W}_{out,max} = -\mathbf{W}_{in,min} = \Sigma \ \boldsymbol{m}_{in} \cdot \boldsymbol{\varepsilon}_{in} - \Sigma \ \boldsymbol{m}_{out} \cdot \boldsymbol{\varepsilon}_{out}$$

- also, known as the reversible (input or output) power

Performance Definitions

• **Exegetic efficiency**:

 $\eta_C = \Delta E / W_{in}$ Where, W_{in} is the actual (real) required input power

- A measure of process performance is the ratio of the input power required (either ideal or real) to the cooling provided [Watts / Watt];
 - This is known as the inverse coefficient of performance

Ideal (theoretical), $\text{COP}_{inv,i} = \Delta E / q_L$ Real, $\text{COP}_{inv,r} = W_{in} / q_L$ Where, q_L is the cooling (load) provided

Quality of Energy

- A thermal transformer that permits the heat energy transfer from cold temperature to hot temperature, with no input work <u>does not exist</u>.
- This 'transmission' (or transfer) limitation of heat energy between temperatures implies that there is a <u>'quality'</u> for <u>heat energy</u>.
- The <u>source</u> and <u>sink</u> temperatures sets this limit on the conversion <u>'quality'</u> for the <u>heat energy</u>.

Quality of Energy (Cont.)

Clausius (In)equality (the 2nd Law of Thermodynamics)

$$\frac{Q_L}{T_L} = \frac{Q_H}{T_H}$$

This equation is a statement of

thermal energy quality equivalence

For	300W _	-4W	2W
example,	$\overline{300K}$	$-\frac{1}{4K}$	$\overline{2K}$

Or, $Q_L = 1W$ at $T_L = 4.22$ K is <u>equivalent in quality</u> as

 $Q_H = 70$ W at $T_H = 300$ K So, the heat leak into a 2K transfer-line is 'worth' (equivalent to) over 2 times the heat leak into a 4.5K transfer-line!

Quality of Energy (Cont.)

Cryomodule

Thermal Shields & Intercepts

- Radiation shields are used to reduce the static heat input to the load and supply to the load
 - LN is used where possible
- Ideal shield temperatures depends on
 - Amount of MLI (# layers, residual gas pressure, layer density, installation practices!)
 - Conduction path (material, ratio of cross-sectional area to length)
 - Exergetic efficiency of refrigeration at a given shield temperature
 - Number of shields
 - Load (coldest) temperature
- For single shields, it is,
 - ~40K for 4.5-K loads
 - ~20K for 2-K loads; COP_{inv,2K}≈ (0.67)·COP_{inv,4.5-K}
 - Note: if COP_{inv,2K} ≈ COP_{inv,4.5-K}, then it would be ~30K for 2-K loads

Thermal Shields & Intercepts

Shield Refigerator Performance

Thermal Shields & Intercepts

• Optimum shield temperatures can be determined using empirical and analytical modeling

Ambient: $T_0 \circ$ Nomenclature: $q_{i,i+1} = R(T_i, T_{i+1}) \cdot \{f(T_i) - f(T_{i+1})\}$ Heat transfer from node 'i' to 'i+1'Shield: $T_1 \circ$ $q_{0,1}$ $f(T_{i+1})$ Shield: $T_1 \circ$ q_1 $R_{i,i+1}(T_i, T_{i+1})$ $f(T_i)$ $q_{1,2}$ Heat load at temperature T_i Shield: $T_2 \circ$ $q_i = q_{i-1,i} - q_{i,i+1}$ $f(T_2)$ $W_i = q_i \cdot \beta_i / \eta_i$ Load: $T_3 \circ$ q_3 $\beta_i = (T_0 - T_i) / T_i$ Refrigeration power required for q_i η_i $M_{inimize}$, W_{tot} $M_{inimize}$, W_{tot} T_1 , T_2 , \cdots , T_{N-1} $P = \Sigma$ W_i

<u>Note</u>:

For conduction: $R_{i,i+1} = A_c / L$, $f(T_i) = K(T_i) = \int k(T) \cdot dT$ For MLI: Spacer, $f(T_i) \sim T_i$; Radiation, $f(T_i) \sim T_i^4$; Gas Conduction (N_2 residual gas), $f(T_i) \sim T_i^{1/2}$ (Ref. C.W. Keller, G.R. Cunnington, A.P. Glassford, "Final Report – Thermal Performance of Multilayer Insulations NASA (R=134477 April 1974)

13

Helium Properties: Saturation P vs. T

<u>Note</u>: logarithmic scale for pressure; also, vapor density behavior is similar.

This has a dramatic effect on equipment size (to process the sub-

Jefferson Lab

Helium Prop: Latent Heat of Vaporization 15

 To date we accept λ ≈ 20 J/g as the useful latent heat for most of the super-conducting applications; <u>this leaves behind up to</u> ~17% of un-utilized latent heat potential!

- Refrigeration below 4.5-K typically involves subatmospheric helium at some point in the process
 - Typically, $COP_{inv,2-K} \approx (0.67) \cdot COP_{inv,4.5-K}$
 - i.e., 1 watt (of refrigeration) at 2-K = 3 watts at 4.5K
- 2-K refrigeration processes typically,
 - Use a 4.5-K refrigerator
 - Do not produce additional refrigeration (i.e., involve expansion work) below 4.5-K
- Since processes used for large accelerators operate at 1.8 to 2.1 K (i.e., 16 to 42 mbar), will refer to these as nominal 2-K systems

Ideal inverse coefficient of performance for isothermal refrigeration below 4.5-K

- Lowering the load temperature is expensive, as well as, increases the equipment sizes!
 - Compared to a 4.4 K (1.2 atm) load (which is at positive pressure), the factor increase in <u>ideal</u> input power for the same load, $(COP_{inv,i})_{ratio}$, and vapor density ratio, ρ_{ratio} (as compared to 1.2 atm), is

	T [K]	p [mbar]	(COP _{inv,i}) ratio	ρ _{ratio}
Reference	▶ 4.4	1200	1.0	1.0
	3.07	266	1.4	4.1
	2.1	42	2.1	20
	1.8	16	2.5	45

<u>Note</u>: COP_{inv,2-K} ≈ (0.67) COP_{inv,2-K} ≈ Real Inverse Coefficient of Performance vs. 4.5 K Refrigerator Exergetic Efficiency

Basic 2-K Helium Process

- For thermo-hydraulic reasons, the supply pressure to the load is usually
 - ~3 atm (super-critical) for large systems and,
 - ~1.2 atm (saturated liquid) for small systems
- But the load is subatmospheric (what about the availability lost between these pressures...that is, throttling from the supply pressure to 0.03 atm ?)...

- This suggests a constructive use of the *(h)* stream pressure drop through the HX, rather than across the JT valve
- Figure shows the enthalpy flux at the HX cold (load) end temperature difference of 0.2 K
- <u>Note</u>: use 0.2 K to provide sufficient stream temperature difference for heat transfer and to avoid super-fluid in HX

- Saturation pressure at 2.2 K is 0.0514 atm
 - So, why not 0.0514 atm, instead of 0.2 atm…?
- Because the required HX size (which is quantified using NTU's or UA) would be too large
 NTU or (UA) ▷∞, as the pressure ▷ 0.0514 atm
- <u>Note</u>: NTU ~ HX length (UA) ~ HX flow cross-section or total volume

• HX total NTU's vs. (h) stream HX CE (outlet) pressure

Cooling curve for HX (i.e., HX-A and HX-B)

- A slight variation that may prove to be more practical in some configurations
 - Move HX-B (lower HX section) into load, where the vapor cools the (h) stream
 - Note: Since this is "crossflow" heat exchange (as opposed to "counter-flow") we are taking advantage of the difference in the specific heat between the (h) stream and the (l) vapor

- It is important to note that if HX-B is immersed into (2-K) *liquid bath*, that this configuration becomes the same as the 'SNS Design'
 - HX-B duty goes into the liquid, so it is now part of the load!

- Present development work
 - A prototype HX of ~5 g/s is under construction at JLab for MSU FRIB

Cryomodule Design

Cryomodule Design

Cryomodule Production

Closed Chemistry Cabinet

Electropolish Cabinet

Hi Pressure Rinse Cabinet

Class 100 & 10 Clean Rooms

2600 ft² Clean Room

Ultra-Pure Water Supply 2000 G/day with 1500 G

Thomas Jefferson National Accelerator Facility

Cryomodule Production

JLab Transfer-Line Cross-Sections

CEBAF distribution system heat in leak of ~12W per CM + CM Static heat in leak of ~18W per CM is adsorbed

37

Transfer lines at CEBAF connecting the cryomodules to the refrigerator

CEBAF Linac

SNS Helium Distribution System

SNS distribution system heat in leak ~10W per CM is adsorbed at ~4-K (which is equivalent to ~3W at 2-K)

Generalized Distribution System

2-K capacity can improve ~9.3% (for the same mass flow rate) as compared to

Generalized Distribution System

Options

Config-3: Enthalpy difference supplied to 2-K is ~6% greater as compared to SNS

42

Conclusions

What is an "Optimal" System?

Conclusions

- Required load characteristics determine the cryomodule design and cryogenic system requirements
- Users need a recognition of the complexity and expensiveness of cryogenics as a utility
 - It is the "blood circulatory" system for super conducting accelerators
- Must <u>collectively</u> optimize the cryomodule distribution and refrigeration systems
- Support is needed for fundamental technology developments in the cryogenic systems to advance efficiency and reliability
- Energy is a precious commodity and in decreasing supply!
 - Accomplish the same <u>end goal</u> with a <u>minimal carbon foot print</u>

Questions?

Thank you all for the interest

