

MYRRHA

Multipurpose hYbrid Research Reactor for High-tech Applications

Prof. Dr. Hamid Aït Abderrahim SCK•CEN, Boeretang 200, 2400 Mol, Belgium haitabde@sckcen.be or myrrha@sckcen.be

Energy Research Infrastructure ?

The MYRRHA Project

International Collaboration

MYRRHA International Consortium

Facing the energy challenge

Electricity generation worldwide (OECD, 2007)

Global issues for nuclear energy

Common needs

Burning legacy of the past

Reducing cost of ultimate waste

Better use of resources

Enhance Safety

Sustainable nuclear fission

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Motivation for transmutation

SCK•CEN : tradition of «first of a kind»

1st pressurized water reactor (PWR) outside of US (BR3)

World first underground laboratory for R&D on HL waste disposal (HADES)

Inventor of innovative nuclear fuel (MOX fuel)

World first lead based ADS (GUINEVERE)

Highest performing material testing reactor in Europe (BR2)

World premiere project for transmutation of nuclear waste

MYRRHA - Accelerator Driven System

(600 MeV - 4 mA proton)

Reactor

- Subcritical or Critical modes
- 65 to 100 MWth

Reactor layout – Updated design

Reactor layout - Core

- k_{eff}≈0.95 (ADS mode)
- 30-35 % MOX fuel
- 7 IPS positions

MYRRHA Accelerator Challenge

fundamental parameters (ADS)				
particle	р			
beam energy	600 MeV			
beam current	4 mA			
mode	CW			
MTBF challenge	> 250 h			
failure = beam trip > 3 s				

				4	4 •	
m		m	an		•••	n

superconducting linac				
frequency	176.1 / 352.2 / 704.4 MHz			
reliability = redundancy	double injector			
	"fault tolerant" scheme			

Redundancy

INJECTOR BUILDING

Multipurpose facility

- 2001: International Strategic Guidance Committee
- 2002: International Technical Guidance Committee
- 2003: Review by Russian Lead Reactor Technology Experts (ISTC#2552p project)
- 2005: Conclusions of the European Commission FP5 Project PDS-XADS (2001-2004)
- 2006: European Commission FP6 Project EUROTRANS (2005-2009): Conclusions of Review and Justification of the main options of XT-ADS starting from MYRRHA
- 2007: International Assessment Meeting of the Advanced Nuclear Systems Institute
- 2008: European Commission FP7 Project Central Design Team (CDT) at Mol for MYRRHA detailed design

2009: MIRT of OECD/NEA on request of Belgian Government

Technology Roadmap Nuclear Energy

IEA perspective on future nuclear energy

Developing a new generation of nuclear technologies

This roadmap recommends that:

- Governments should continue to support RD&D of advanced nuclear technology to capture its long-term potential to provide sustainable energy with improved economics, enhanced safety and reliability, and stronger proliferation resistance and physical protection.
- The international community should continue to strengthen co-operation on the development of advanced reactor and fuel cycle technologies.
- The nuclear industry and utilities should participate, in co-operation with nuclear research institutes, in the development of next generation nuclear systems to ensure that the designs selected for demonstration are those most suitable for eventual commercialisation.

2. The LFR concept can be technologically demonstrated thanks to **MYRRHA**

Europe and future nuclear energy

ESFRI European Strategic Forum for Research Infrastructure

SET Plan European Strategic Energy Plan

MYRRHA part of ESNII

European Sustainable Nuclear Industrial Initiative

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Detailed budget: balancing costs & revenues

Forging strong partnerships and alliances in Europe and worldwide

Belgian commitment: secured International consortium: under construction

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

The project schedule

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

MYRRHA: an international project

INVESTMENT PHASE

Infrastructure Consortium

International Members Consortium – Phase 1

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

OPERATION PHASE

International Members Consortium - Phase 2

Joining the MYRRHA project

- Belgium is welcoming international participation in the MYRRHA consortium
- Membership eligibility for the international MYRRHA consortium is based on a balanced in-cash/in-kind contribution
- Until end 2014, our objectives are:
 - to collect Letters of Intent for participation in the MYRRHA International Consortium (deadline mid 2012)
 - to sign **Memoranda of Understanding** for collaboration in MYRRHA with international partners (deadline mid 2014)
 - To finalise the **Consortium legal framework** (deadline end 2014)

MYRRHA: EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM

A pan-European, innovative and unique facility

- Time horizon: full operation ~ 2023
- Costs: ~ EUR 960 million

