2nd International Workshop on ACCELERATOR-DRIVEN SUB-CRITICAL SYSTEMS & THORIUM UTILIZATION

December 11-14, 2011 Bhabha Atomic Research Centre, Mumbai

Sponsored by Board of Research in Nuclear Sciences, Department of Atomic Energy

D. Kanjilal Inter-University Accelerator Centre (IUAC) New Delhi 110067

dk@iuac.res.in

Jefferso

Inter-University Accelerator Centre (IUAC), Delhi

Operation: 24 hours x 7 days

Ion beams: most of the species Energy: eV to near GeV

15UD Pelletron Accelerator at IUAC

Off-set quadrupoles after strippers in terminal

Foil Stripper at the Tank Bottom before analyzing Magnet

Replacement of column support posts

IUAC superconducting LINAC

Eight QWRs, SC Solenoid, etc of the first Linac module

First Indigenous QW Resonator of IUAC (v/c=0.08)

Production of QWRs – 2nd & 3rd Modules

Niobium Top Flanges. Niobium Outer Housings.

Production of QWRs – 2nd & 3rd Modules

Bare niobium QWRs.

One dozen Production QWRs.

Slow Tuner components.

Niobium Slow Tuner bellows.

Performance of Indigenously built Nb QWRs

Accelerating gradient E_a achieved in different QWRs indigenously built at IUAC, for the Superconducting Linac.

Resonator Q as a function of the accelerating gradient E_a at 4.2 K (QWR # 4).

Superconducting response in the electron beam welded region

Isothermal M-H plots of electron beam welded and electropolished niobium at 4 K (left) and 2 K (right)

<u>4 K Results</u>

- •H_P Step Joint & EP 1300 Oe
- \cdot H_P Butt Joint & EP 1350 Oe
- •H_P as-received EP 1350 Oe

 $\frac{2 \text{ K Results}}{^{\circ}\text{H}_{\text{P}} \text{ Step Joint & EP - 1650 Oe}}$ $^{\circ}\text{H}_{\text{P}} \text{ Butt Joint & EP - 1700 Oe}$ $^{\circ}\text{H}_{\text{P}} \text{ as-received EP - 1700 Oe}$

Pure Niobium: $H_{C1} @ 4 K \sim 1400 Oe$ @ 2 K ~ 1800 Oe

- 1. Limiting accelerating gradient is close to the intrinsic limit.
- 2. HP can be used for characterization of niobium material and various processes employed in the fabrication of SCRF cavities

Prakash N. Potukuchi et al., Phys. Rev. ST - AB, **14**, 122001 (2011)

Before welding using EBW

In-House Fabrication of Resonator

High Vacuum Furnace

Max Temp. 1200 C @ 5.0 x 10⁻⁷ torr

Hot Zone – \$\$\overline{600mm}\$ x 1000mm

Damping of Micro-harmonics

Resonator along with SS-balls

S. Ghosh et al., Phys. Rev. Spcl. Topics – Accl. & Beams 10, 042002 (2007)

RF Amplifier and Control system

Power supplies for beam transport systems

Superbuncher in the beam line (FWHM~170 ps)

LINAC Module ready for delivering beams

S. Ghosh et al., Phys. Rev. Spcl. Topics – Accl. & Beams 12, 040101 (2009)

Three accelerating modules and the second cryostats with resonators

Rebuncher having two QWRs (350-400 ps)

LINAC Beam Run

Beam	Energy from Pelletron (MeV)	Energy from LINAC(MeV)	Total Energy (MeV)	Energy gain through LINAC for different beams						
12 C, 6+	87	19.2	106.2		80-					
					70-					
16 O, 8+	100	20.02	120		60-					
		18	118	5	50-					
		10.25	110.25		40					
					30					
18 O, 8+	100	20.026	120	<u> </u>	20					
		16	116		20-					
		12.25	112.25		10-				┠────┣	
		8	108		0	· مە [×]	- 8×	~ 9×	۰ ۱ ۱	$\lambda^{k^{\star}} = \alpha^{\lambda^{\star}}$
					1200	160 °	180 °	194 2	851 × 481	107 AB L
19 F, 9+	115	25.8	140.8	Beam with Charge state						
		22.2	137.8							1
						Pell.	Linac	Total	Beam	
28 Si, 11+	130	37.5	167.5		Beam	energy (MeV)	gain	energy (MeV)	Line	
						(1110)	(MeV)			
48 Ti, 14+	162	51	213		¹⁹ F ⁺⁷	100	37	137	NAND	
		36	198						Linac	
					²⁸ Si ⁺¹¹	130	60	190	Scatt.	
107 Ag, 21+	225	75	300							
				•			56	186	HYRA	

 ${}^{31}P^{+11}$

130

58

188

HYRA

ECR Ion Source with associated components on 400 kV HV Platform

400 kv HV Platform with Accelerating Tubes

Electronics and Control

Three beam lines of ECRIS on 400 kV platform based facility

1.7 MeV Tandem Pelletron Accelerator with Experimental Facilities

Accelerator Mass Spectrometry

10Be and 26Al isotopes for geological and climatological studies

Clean Chemistry Laboratory:

High Current Injector

High Current Injector Beam Line Layout

Characteristics of HTS (BSSCO) tapes

and also on the <u>direction</u> of the field

Maximum operating current181 AMaximum radial field1.4 TIc @ 77 K,0B110 A

Field vectors on the yoke cross section

Axial field measurements

Various Stages of Development of HTS-ECRIS

Experimental Chamber

HTS-ECRIS

HTS-ECRIS with Experimental Chamber (Operation >38,000 hrs)

Prototype RFQ (f=48.5MHz) for A/q o f 6 for acceleration from 8keV/A to 180keV/A

Bead pull test of RFQ

Modulated vanes of RFQ

Thermal Simulation For 35kW Powered Prototype RFQ

Results

- Actual test for RF power compares well with the simulated results.
- The Cooling circuit design is satisfactory for the vanes and posts.
- ✤ The chamber and base plate will require additional cooling.
- The RF tests are carried on unmodulated and modulated vanes with and without copper plating. It is found that after copper plating improved the quality factor is improved from 2355 to 4206.
- ✤ Power required for 70kV inter-electrode is reduced from 43kW/m to 24.6kW/m.

	D	rift T	ube Lina	ac							
Energy: 180 KeV/u to 1.8 MeV/u A/q = 6, 97 MHz, 6 RF Resonators											
、 #	Length (cm)	No. Of Cells	Eout (MeV/u)								
	38.5	11	0.32								
	73.4	13	0.55								
	94.4	13	0.85								
	86.5	11	1.15								
	92.2	11	1.46								
	81.6	9	1.80	Prototype DTL Resonato							
	#	D Energ A/q = A/q = # Length (cm) 38.5 73.4 94.4 94.4 86.5 92.2 81.6	Drift ToEnergy: 180 Kg $A/q = 6, 97$ MHz#Length (cm)No. Of Cells#38.51173.41394.41386.51192.21181.69	Drift Tube Lina Energy: 180 KeV/u to 1.8 Me A/q = 6, 97 MHz, 6 RF Resonant A/q = 6, 97 MHz, 6 RF Resonant # Length (cm) No. Of Cells Eout (MeV/u) 38.5 11 0.32 73.4 13 0.55 94.4 13 0.855 86.5 11 1.15 92.2 11 1.46 81.6 9 1.80							

Complete design validation has been done on full scale prototype resonator

Single Spoke Resonator – SSR1 for Project-X at FNAL, USA

SSR1 - β =0.22, 325 MHz, Niobium Assembly

SSR1 Fabrication

Nb Half Spoke after machining

SSR1 - Fabrication

End Wall - Copper

Nb Coupler Port Tubes

Spoke to Shell Collar

Donut Rib Forming Die

Single Spoke Resonator – SSR1

EBW - End Wall to Donut Rib

Close up view of the End Wall assembly

End Wall assemblies

Outer Shell EP setup

Low Beta Resonator - LBR

Prototype Low Beta Resonator - LBR

EBW - Central Coaxial Line

Drift Tubes & Saddles

EBW – Drift Tube to Saddle

Outer Housing boring of Coupling and Beam Ports

EBW – Saddle to Beam Port

TESLA Type 1.3 GHz Single Cell Cavities

Gradient (MV/m)

Accelerating gradient achieved in Cavity # 3 & 4

Niobium Single cell Cavity

Control Room for 15UD Pelletron and SC Linac Booster

Conclusion

Long term road map for addition as well as up-gradation of ion beam facilities at IUAC are planned based on the use, results of experiments and future requirements.

Infra-structures and facilities for indigenous development, fabrication and tests of various ion accelerators and associated components are upgraded continuously.

HTS-ECR ion source on elevated (kV) platform followed by RFQ and DTL, Low Beta Cavities will be alternate injector of Superconducting LINAC in future.

Technology related to niobium resonators has been developed successfully.

The two LINAC modules have been completed and used to deliver beams for scheduled experiments.

Acknowledgements

Colleagues involved dedicatedly in the development, operation and maintenance of the Accelerators and associated systems.

Dr. Amit Roy, Director, IUAC

