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Overview

v'Brief introduction to the largest SRF CW Accelerator
v'Fine grain and ingot niobium technologies
v' Qo Improvement Program

v’ Ingot niobium CW Applications



Glossary 1

Niobium — highly ductile refractory metal with highest
superconducting transition temperature

(T~ 9.25 K') at which the electrical resistance drops to
Zero, highest peak magnetic field H, & high

melting temperature T |
RRR — Residual Resistance Ratio ~ R300/R4.2

Important Interstitials H, C, N and O that contribute to RRR
significantly
— and tantalum, substitutional impurity does not
significantly contribute

Surface Resistance R.= Ry<tR,

Rgcs depends on surface magnetic field, temperature and
frequency



Glossary 2

Quality Factor Q,=G/R, where G is the
geometry factor and it is independent of the
cavity frequency (ideal ~ 2 X 10 %)

H, Surface peak magnetic field (mT)
E... Accelerating gradient (MV/m)

Optimized Processes and procedures:
forming cells, cleaning, welding, surface
treatments and stress relieving processes
and final contamination free evacuation
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Highlights of Early SRF Technology

Cavities were mostly made from ingot niobium
— Process and procedures were similar and as varied as today

Reactor grade Niobium material in ingot, bar, plate sheet and
tube form was available

Achievable gradient limited by multipacting and/or field emission
Residual surface resistance (nQ) was not well understood
— Still the case

At highest frequencies (Electropolished fine grain, X-band) Hpk ~
159 mT QO ~5x109

(BCP’d ingot Nb, 1970’s) Hpk ~ 108 mT & Q0 ~1 X 1011 @ 1.2 K
CW

For comparison (CEBAF upgrade spec.) Hpk~76 mT QO ~
7 X109 @ 2 KCW (2008)



Historical Example of Ingot Niobium 1

FIG. 1. An electron-beam
welded TMg, mode Nb cavity.
The cavity is resonant at 8.6
GHz and is 3.6 cm in over-
all length.

Hoi~ 108 mT with BCP

Stanford solid niobium cavity 1970



Historical Example of Ingot Niobium 2

Siemens solid niobium cavity 1973

Ho~ 109 mT with BCP
- oo . H,~ 130 mT with EP

Fig. 1. Single piece TMGlo—hiobium cavity with a resonant fre-
quency of 9.5 GHz.

EP’d reactor grade fine grain niobium cavity set a record Hpk of 159 mT
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Multi cell cavity fabrication

Forming Machining Welding Tuning

>80% of CEBAF cavities were made with CBMM Pyrochlore ore based niobium
In comparison to present day use of Tantalite/Columbite ore based niobium



Niobium cavity — performance (CW)
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Comparison of fine grain and ingot niobium



Niobium Specifications — Past & Present (@JLab)

e Polycrystalline Niobium with ASTM #5 Grain Size or finer ~
50 micro meters & 90% recrystallized

 Percentage of elongation > 25
e Yield Strength > 10.7 KSI (~75 MPa) (7 KSI for SNS)

e RRR > 250 Note:

Recrystallization and high yield strength (YS) are
mutually exclusive, the “kiss pass” used for increasing
e Tantalum < 1000 wt ppm the YS introduces significant surface damage

Note: These specifications are wrt the physical structure only & do not include SC properties




Process steps - fine grain Niobium

9. Rolling 13. Annealing

Fabrication process of Nb sheets for

Superconducting Cavities

Tokyo Denkai Co, Ltd.

H.Tmezawa | |

e ey () [l
1. Mother Material 5. EB Melting N s | |

(2nd, 3rd) °, | |

6. Cutting I %
11. Rolling 15. Polishing
I e o Ve 4

12. Cutting| 16. Packing|

10. Polishing 14. Testing

2. Pressing

3. ODut gassing

H and Sintering

4. EB Melting{1st) 8. Mechanical
grinding

vtUIING this process foreign materials
can be embedded so QA is required




Birth of Ingot Niobium Technology
CBMM-JLab CRADA, August 2004

Comparison of Single and Poly Crystal RRR niobium
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First CBMM/JLab International Patents were applied for in April, 2005



Araxa Mine in Brazil & RRR Ngrom ore to oxide to large grain

ingots

The CBMM open cast mine Conveyor belt bringing the ore to concentration plant

Electron beam furnace for the refinement of Finished RRR Nb ingot from the Pyrochlore ore
Niobium metal, producing 210 tonnes per annum



Economic path for CW applications

Fabrication process of Nb sheels lor

Superconducting Cavities
Tokvoe Denkai Co., Ltd.
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Extrinsic and intrinsic contamination of Nb
determines the performance of the cavities

Extrinsic Intrinsic
e Surface contamination  Niobium is a prolific
— Molecular and hydrogen absorber in
particulate the absence of the

natural surface oxide
— Hydride formation



Vacuum Contamination Work Shop at JLab 1997

Minimizing organic and particulate recontamination addressed

Re-contamination prevention courses were organized at JLab in 2000 and 2005



International Symposium On
Hydrogen In Matter (ISOHIM)
Publications

Hydrogen in Materials and Vacuum Systems AIP CP 671
http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=671&Issue=1

Hydrogen in Matter AIP CP 837
http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=837&Issue=1

Single Crystal Large Grain Niobium AIP CP 927
http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=927&Issue=1

Superconducting Science and Technology of Ingot Niobium AIP CP 1352
http://scitation.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1352&Issue=1
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Q,, hydrogen & cavity performance

e Q-disease in the cavities is an example of a gross manifestation of
hydrogen effect similar to gross air leak in high vacuum systems

 As we are looking to improve the cavity performance (Q) further we
need to understand the effects of proton in niobium and take steps
to minimize the solid-solution of protons, similar to eliminating
smaller air leaks in UHV systems

 Hydrogen is difficult to measure quantitatively at the concentration
levels that we have to in materials in general and greatly in niobium

e Like vacuum leak standards, we need to develop Nb-hydrogen
standards



Goals of the Qo Improvement Program

1. Scientific Understanding



Hydrogen absorption with BCP and EP

* Very high equilibrium hydrogen activities (fugacity) have been
estimated when Nb metal is in contact with water or BCP solution

e Hydrogen is readily absorbed into Nb when the protective oxide
layer is removed

 Lower H fugacity's are obtained due to an anodic polarization of Nb
during EP and hence lower hydrogen absorption

R.E. Ricker, G. R. Myneni, J. Res. Natl. Inst. Stand. Technol. 115, 353-
371 (2010)

NIST/JLab



High temperature annealing removes gross hydrogen

FIGURE 1. SIMS mass spectra showing difference in H between (a) non-heat treated and (b) heat
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Heat treatment to remove hydrogen

» 800°C/3h, pressure ~ 10° mbar

* No chemical etching afterwards!

* Nb samples were treated with the
cavities and depth profiling of the
impurities was done at NCSU

~ 2 orders of magnitude lower
hydrogen content after HT
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Currently used furnaces contaminate the cavity surfaces, chemical re-etching reintroduces H



Niobium — hydrogen phase diagram
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Hydrogen p
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Atomic model of proton in niobium

Flat Bottom Spherical Potential Well

V& O
|
|

*The proton at an interstitial site is represented by a wave function in a
spherical potential well of radius a and depth V

*The proton’s bound states will strongly interact with one another
leadingto  more complex electronic properties

sFormation of a “proton band structure” within the metal will also
affect mechanical and superconducting properties

John Wallace, Casting Analysis Corporation



Goals of the Qo Improvement Program

2. Technology Development



Eddy current (0.1 to 2 GHz) & Optical measurement system

RF & Specfromefer

Por

Castine Analvsis Corporation/JLab ——



Niobium-hydrogen measurement cells




RF reflection measurement principle
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Clean UHV furnace - patents applied for
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Cavity material and preparation

e CBMM ingot niobium, RRR ~ 200 (>350), Ta ™
1350 (<500) wt ppm, inexpensive 50% to 60%
less than conventional Nb

e Barrel polishing 73um, BCP 65um , a total of
138 um removal and high pressure UHP water
(~200 pm for fine grain)



High and flat Qo — characteristic of ingot niobium
Large grain RRR ~ 200 Ta ~ 1375 CEBAF OC shape 1474 MHz cavity

1E+12

® 15um BCP 1:1:2, T=2.0K

4 1000°C/6h Ar purge, 02 vent, HPR, T=2.0K

@ 1000°C/6h Ar purge, O2 vent, HPR, T=1.5K

+ 1000°C/6h Ar purge, O2 vent, HPR, 120°C/12h bake, T=2.0K

1E+10 Quench —

1E+Dg T T T I T I T T T I T I T I T I T I T I T I T I T I T
0 10 20 30 40 50 60 70 80 SO 100 110 120 130 140

P. Dhakal, G. Ciovati, G. Myneni, Jefferson Lab, to be published Bp [mT]



Tantalum and RRR have minimal influence on phonon peak
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Cryogenic Refrigeration Cost Reduction with
improved Qo (~factor of 3) CW SRF Cavities

A 10 kW 2 K refrigerator costs ~ 100 MS

e A factor of 3 improvement in Qo will lower
this to ~ 45 MS

 The power consumption and hence the
operating costs will be reduced by a third
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Ingot niobium CW Applications

e Accelerator Driven Systems

* Energy Recovery Linacs for future light sources

e Compact Electron Linacs for Industrial and
Medical Applications



Accelerator Driven Systems

* Nuclear Waste Transmutation
*New nuclear fuel cycle material studies
* Energy Sustainability

«Carbon foot print reduction



MYRRHA Concept
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CEBAF Upgrade cavities performance
with the state of the art processes (EP)
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Oliver Napoly

First Saclay built XFEL cryommodule will have all the ingot Nb
cavities developed at DESY (Just BCP)
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DESY 9 Cell ingot XFEL cavity sets the world record

Qq Q vs. Eacc
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Summary

* Ingot niobium with high tantalum content
meets CW SRF applications
with minimum processing, lower cost and
enhanced performance

* Let us jointly work in implementing
this cutting edge technology
for energy sustainability at
reduced carbon foot print
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