CW SRF Systems with Ingot Niobium* and their Applications

Ganapati Rao Myneni ISOHIM/University of Virginia/JLab

*CBMM – JLab Technology

ADS 2011 Bhabha Atomic Research Cnetre, Mumbai Dec 11-14, 2011

Overview

✓ Brief introduction to the largest SRF CW Accelerator

✓ Fine grain and ingot niobium technologies

✓Qo Improvement Program

✓ Ingot niobium CW Applications

Glossary 1

- Niobium highly ductile refractory metal with highest superconducting transition temperature $(T_c \sim 9.25 \text{ K})$ at which the electrical resistance drops to Zero, highest peak magnetic field H_{pk} & high melting temperature T_m
- RRR Residual Resistance Ratio ~ R300/R4.2
- Important Interstitials H, C, N and O that contribute to RRR significantly
 - and tantalum, substitutional impurity does not significantly contribute
- Surface Resistance $R_s = R_{BCS} + R_0$ R_{BCS} depends on surface magnetic field, temperature and frequency

Glossary 2

- Quality Factor Q₀=G/R_s, where G is the geometry factor and it is independent of the cavity frequency (ideal ~ 2 × 10¹¹)
- H_{pk} Surface peak magnetic field (mT)
- E_{acc} Accelerating gradient (MV/m)
- Optimized Processes and procedures: forming cells, cleaning, welding, surface treatments and stress relieving processes and final contamination free evacuation

Jefferson Lab Accelerator Site

The Institute for Superconducting Radio-Frequency Science and Technology -SNS drive linac - JLab - FEL CEBAF SRF recirculating linac

Nuclear Physics Detector Halls A, B, C

FEL

Highlights of Early SRF Technology

- Cavities were mostly made from ingot niobium
 - Process and procedures were similar and as varied as today
- Reactor grade Niobium material in ingot, bar, plate sheet and tube form was available
- Achievable gradient limited by multipacting and/or field emission
- Residual surface resistance (nΩ) was not well understood
 Still the case
 - Still the case
- At highest frequencies (Electropolished fine grain, X-band) Hpk ~ 159 mT Q0 ~5x109
- (BCP'd ingot Nb, 1970's) Hpk ~ 108 mT & Q0 ~1 × 1011 @ 1.2 K CW
- For comparison (CEBAF upgrade spec.) Hpk ~ 76 mT Q0 ~ 7 × 109 @ 2 K CW (2008)

Historical Example of Ingot Niobium 1

FIG. 1. An electron-beam welded TM_{010} mode Nb cavity. The cavity is resonant at 8.6 GHz and is 3.6 cm in over-all length.

H_{pk}~ 108 mT with BCP

Stanford solid niobium cavity 1970

Historical Example of Ingot Niobium 2 Siemens solid niobium cavity 1973

 H_{pk} ~ 109 mT with BCP H_{pk} ~ 130 mT with EP

Fig. 1. Single piece TM_{010} -niobium cavity with a resonant frequency of 9.5 GHz.

EP'd reactor grade fine grain niobium cavity set a record Hpk of 159 mT

Multi cell cavity fabrication

>80% of CEBAF cavities were made with CBMM Pyrochlore ore based niobium In comparison to present day use of Tantalite/Columbite ore based niobium

Niobium cavity – performance (CW)

In nearly 40 years E_{acc} improved by a factor of 5, now DOE NP and JLab working to improve Q₀ by a factor of ~3

Comparison of fine grain and ingot niobium

Niobium Specifications – Past & Present (@JLab)

- Polycrystalline Niobium with ASTM #5 Grain Size or finer ~ 50 micro meters & 90% recrystallized
- Percentage of elongation > 25
- Yield Strength > 10.7 KSI (~75 MPa) (7 KSI for SNS)
- RRR > 250

 Recrystallization and high yield strength (YS) are mutually exclusive, the "kiss pass" used for increasing the YS introduces significant surface damage

Note: These specifications are wrt the physical structure only & do not include SC properties

Process steps - fine grain Niobium

Birth of Ingot Niobium Technology CBMM-JLab CRADA, August 2004

Chosen for Excellent Ductility and Surface Smoothness with just BCP First CBMM/JLab International Patents were applied for in April, 2005

Araxá Mine in Brazil & RRR N From ore to oxide to large grain ingots

The CBMM open cast mine

Electron beam furnace for the refinement of Niobium metal, producing 210 tonnes per annum

Conveyor belt bringing the ore to concentration plant

Finished RRR Nb ingot from the Pyrochlore ore

Economic path for CW applications

Extrinsic and intrinsic contamination of Nb determines the performance of the cavities

Extrinsic

- Surface contamination
 - Molecular and particulate

Intrinsic

- Niobium is a prolific hydrogen absorber in the absence of the natural surface oxide
 - Hydride formation

Vacuum Contamination Work Shop at JLab 1997

Minimizing organic and particulate recontamination addressed

Re-contamination prevention courses were organized at JLab in 2000 and 2005

International Symposium On Hydrogen In Matter (ISOHIM) Publications

Hydrogen in Materials and Vacuum Systems AIP CP 671

http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=671&Issue=1

Hydrogen in Matter AIP CP 837

http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=837&Issue=1

Single Crystal Large Grain Niobium AIP CP 927 http://www.virtualjournals.org/dbt/dbt.jsp?KEY=APCPCS&Volume=927&Issue=1

Superconducting Science and Technology of Ingot Niobium AIP CP 1352 http://scitation.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1352&Issue=1

Q₀, hydrogen & cavity performance

- Q-disease in the cavities is an example of a gross manifestation of hydrogen effect similar to gross air leak in high vacuum systems
- As we are looking to improve the cavity performance (Q) further we need to understand the effects of proton in niobium and take steps to minimize the solid-solution of protons, similar to eliminating smaller air leaks in UHV systems
- Hydrogen is difficult to measure quantitatively at the concentration levels that we have to in materials in general and greatly in niobium
- Like vacuum leak standards, we need to develop Nb-hydrogen standards

Goals of the Qo Improvement Program

1. Scientific Understanding

Hydrogen absorption with BCP and EP

- Very high equilibrium hydrogen activities (fugacity) have been estimated when Nb metal is in contact with water or BCP solution
- Hydrogen is readily absorbed into Nb when the protective oxide layer is removed
- Lower H fugacity's are obtained due to an anodic polarization of Nb during EP and hence lower hydrogen absorption

R.E. Ricker, G. R. Myneni, J. Res. Natl. Inst. Stand. Technol. 115, 353-371 (2010)

NIST/JLab

High temperature annealing removes gross hydrogen

NbH (Beta Phase) very much in existence after anneals

Heat treatment to remove hydrogen

Depth (µm)

- 800°C/3h, pressure ~ 10⁻⁶ mbar
- No chemical etching afterwards!
 - Nb samples were treated with the cavities and depth profiling of the impurities was done at NCSU

Currently used furnaces contaminate the cavity surfaces, chemical re-etching reintroduces H

Niobium – hydrogen phase diagram

Hydrogen phase change

Atomic model of proton in niobium

•The proton at an interstitial site is represented by a wave function in a spherical potential well of radius a and depth V

•The proton's bound states will strongly interact with one another leading to more complex electronic properties

•Formation of a "proton band structure" within the metal will also affect mechanical and superconducting properties

John Wallace, Casting Analysis Corporation

Goals of the Qo Improvement Program

2. Technology Development

Eddy current (0.1 to 2 GHz) & Optical measurement system

Niobium-hydrogen measurement cells

RF reflection measurement principle

Proton in SRF niobium, J. P. Wallace, SSTIN10 AIP CP 1352, 2011

Clean UHV furnace - patents applied for

Cavity material and preparation

 CBMM ingot niobium, RRR ~ 200 (>350), Ta ~ 1350 (<500) wt ppm, inexpensive 50% to 60% less than conventional Nb

 Barrel polishing 73μm, BCP 65μm, a total of 138 μm removal and high pressure UHP water (~200 μm for fine grain)

High and flat Qo – characteristic of ingot niobium

Large grain RRR ~ 200 Ta ~ 1375 CEBAF OC shape 1474 MHz cavity

Tantalum and RRR have minimal influence on phonon peak

Specimen	Estimated RRR	Tantalum content (ppm) [3]	Heat Treatment	Titanium getter
1	191	1275	600 °C, 6 hrs	No
2	131	668	600 °C, 6 hrs	No
3	190	756	750 °C, 2 hrs	Yes
4	196	756	750 °C, 2 hrs	Yes
5	104	1322	800 °C, 2 hrs	No
6	143	523	800 °C, 2 hrs	No

MSU

Cryogenic Refrigeration Cost Reduction with improved Qo (~factor of 3) CW SRF Cavities

• A 10 kW 2 K refrigerator costs ~ 100 M\$

 A factor of 3 improvement in Qo will lower this to ~ 45 M\$

• The power consumption and hence the operating costs will be reduced by a third

SSTIN10

PROGRAM COMMITTEE:

Ganapati Rao Myneni Bob Rimmer Chris Adolphsen Ian Ben-Zvi Walter Hartung Kwang-Je Kim John Mammosser Shekhar Mistra Shekhar Shekhar Kenji Saito Friedhold Schoelz Waldemar Singer Marcos Stuart Kui Zhao

Chair UVa/JLab = USA JLab = USA SLAC = USA BNL = USA ANL = USA SNS = USA FNAL = USA RRCAT = India KEK = Japan Heroaus = Germany DESY = Germany DESY = Germany DESY = Germany

INTERNATIONAL ADVISORY COMMITTEE Tadeu Corneiro CBMM-Brazi

Tadeu Cameiro Andrew Hutton JLab - USA Srikumar Banerjee BARC-India Reinhard Brinkman DESY - Germany Swapon Chattopadhyay Cockcraft Institute - UK FNAL-USA Helen Edwards Manauchehr Farkhondeh DOE-USA AT Wah Chang-USA Ron Graham Cornel Uni. - USA Georg Hoffstaetter Univ Milan/INFN - Italy Carlos Pagani Amit Roy JUAC - India Akira Yamamoto KEK-Japan **Richard York** MSU-USA

Organizing Committee

Ganapati Rao Myneni Chair, J.L Glanuigi Clovati J.Lab – US Ruth Bizot J.Lab – US Carolyn Camp J.Lab – US Marty Hightower J.Lab – US Cynthia Lockwood J.Lab – US Slephanie Schatzel J.Lab – US

Chair, JLab/ISOHIM – USA JLab – USA

International Symposium On Hydrogen In Matter (ISOHIM) Board Members: Jim Miller - Co-Chair, ANL USA Ganapati Rao Myneni - Co-Chair, JLAB, USA Guenter Luepke - Secretary, College of W&M, USA Srikumat Banerjee - AEC-DAE, India Bob Bowman - JPL - Collech (Retired), USA Tadeu Carneiro - CBMM, Brazil Christian Day - XIT, Germany Rod Gerig - ANL, USA Peter Lindbjad - Uppsaja University, Sweden Richard Ricker - NIST, USA John Wallace - Casting Analysis Carporation, USA Myneni Ciovati Stuart

Symposium Source & Technology of Ingot Niobium

Jefferson Lab • Newport News, Virginia, USA September 22-24, 2010

Editors:

Ganapati Rao Myneni Gianluigi Ciovati Marcos Stuart

m on the Superconducting echnology of Ingot Niobiur

2010

AIP Conference Proceedings

ΔIP

ERICAI

1212115

CP 1352

AIP CONFERENCE PROCEEDINGS

Ingot niobium CW Applications

• Accelerator Driven Systems

• Energy Recovery Linacs for future light sources

 Compact Electron Linacs for Industrial and Medical Applications

Accelerator Driven Systems

- Nuclear Waste Transmutation
- •New nuclear fuel cycle material studies
- Energy Sustainability
- Carbon foot print reduction

MYRRHA Concept

Accelerator (600 MeV – ≤ 4 mA proton) Reactor•Subcritical mode (~85 MW_{th})•Critical mode (~100 MW_{th})

CEBAF Upgrade cavities performance with the state of the art processes (EP)

Oliver Napoly

First Saclay built XFEL cryommodule will have all the ingot Nb cavities developed at DESY (Just BCP)

Eacc, MV/m

DESY 9 Cell ingot XFEL cavity sets the world record

Waldemar Singer

Summary

- * Ingot niobium with high tantalum content meets CW SRF applications with minimum processing, lower cost and enhanced performance
- * Let us jointly work in implementing this cutting edge technology for energy sustainability at reduced carbon foot print

Acknowledgements

Tadeu Carneiro, Marcos Stuart – CBMM

A. Hutton, G. Ciovati, P. Dhakal (PDF), P. Kneisel, E. Akers, H. Fanning – Jefferson Lab

F. Stevie, P. Maheswari (grad student), D. Griffis – NCSU

R. Ricker – NIST

J. Wallace – Casting Analysis Corporation

Björgvin Hjörvarsson – Uppsala University

B. Lanford – UNY, Albany

R. Pike and summer student interns – W&M

Hani Elsayed-Ali, Ashraf Hassan Farha (grad student) – ODU

Asavari Dhavale (grad student) – BARC/HBNI

Sindhunil Roy – RRCAT