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Thorium as nuclear fuel : advantages and challenges
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BARC Thorium and Uranium : Naturally occurring materials to 
harness nuclear energy

 Natural Thorium
 Abundant
 Does not have fissile component

 Natural Uranium
 With 0.7% content of fissile U-235
 Well developed fuel cycle

 Presently, global nuclear energy programme is predominantly 
based on fissile U-235 

 Sustainability of nuclear energy requires 
 Adoption of closed fuel cycle with breeding
 Use of the fertile thorium resource 
 Use of thorium has to begin well before using up uranium resource
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Attractive features of thorium 

 Abundance of thorium
 Uniformly distributed in earth crust
 3 to 4 times abundant than uranium

 Better Performance Characteristics
 Higher melting point
 Better thermal conductivity
 Lower fission gas release
 Good radiation resistance and dimensional stability
 Reduced fuel deterioration in the event of failure

 Waste Management
 No oxidation during permanent disposal in repository
 Generates less plutonium and higher actinides
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Challenges in the use of thorium

 Higher sintering temperature required for fabrication
 Presence of 232U in 233U

 Recovered 233U will always be contaminated with 232U 
 The daughter products of 232U, 212Bi and 208Tl are emitters of hard 

gamma rays. 
 Recycling of uranium requires fuel fabrication to be carried out in 

shielded hot-cells remotely and with considerable automation. 

 Problems in reprocessing
 Stable nature poses a major challenge in dissolution 
 Single Oxidation State of Th. Difference in the selectivity has to be 

optimized to meet the desired Partitioning.
 Third phase formation

 Waste management aspects
 HLLW from  thoria based spent fuel reprocessing will contain Th, Al 

and corrosive F.
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Global Experience with Thorium
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Early years in the use of thorium

 1956 : BORAX-IV
 Boiling Water Reactor
 Explored the thorium fuel cycle and uranium-233 fuel with a power of 

20 MW thermal

 1962 : Indian Point-1
 PWR designed to produce 275 MWe
 First core used thorium-based fuel

 1966 : MSRE
 Molten-Salt Reactor Experiment (MSRE)
 Operated for 17,655 h (~ 2 years)

 1967 : AVR, Germany
 AVR (a pebble-bed high temperature research reactor)
 Operated for more than 2 decades using HEU-Th-fuel
 fuel burnups of more than 140 000 MW·d/tHM achieved
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BARC Shipping port Reactor:  A major experience in the use of 
thorium 

 First large-scale nuclear power reactor 
for electricity
 Net station output - 60 MWe
 Test bench for thermal breeder using 

233U fuel

 Operated as LWBR 
 1977-1982 
 1.39% more fissile fuel at EOL

 Breeding success achieved 
 by high cost of sophisticated core  
 by sacrificing reactor performance
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Experience with Thorium based fuels in world

 Thorium fuel experience exists for test reactors  and power reactors of different 
types. All these experiences are more than three decades old.  

Name & country Type Power Fuel Operation

Lingen, 
Germany BWR 60 MWe Test fuel (Th+Pu)O2

pellets Till 1973

MSRE, 
ORNL, USA MSBR 8 MWt 233U molten fluorides 1964-1969

Shippingport USA LWBR 60 MWe Th+233U driver fuel, 1962-1980

Indian Point 1, 
USA PWR 285 MWe Th+233U driver fuel, 

Oxide pellets 1962-1980

SUSPOP/KSTR, 
KEMA, 
Netherlands

Aqueous 
homogeneous 
suspension

1 MWt Th+HEU, Oxide pellets 1974-1977

NRU & NRX, 
Canada MTR Th+235U, Test fuel Irradiation of 
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BARC
Thorium based fuels have been loaded either partially or fully in High 
Temperature Gas cooled Reactor (HTGR) cores.

Name & 
country Type Power Fuel Operation

AVR, 
Germany

HTGR 
(Pebble bed) 15 MWe

Th+235U driver fuel, 
Coated fuel particles of oxide & 
dicarbides

1967-1988

THTR-300, 
Germany  

HTGR 
(Pebble bed)

300 
MWe

Th+235U driver fuel, 
Coated fuel particles of oxide & 
dicarbides

1985-1989

Dragon, 
UK, OECD

HTGR 
(Prismatic block) 20 MWt

Th+235U driver fuel, 
Coated fuel particles of oxide & 
dicarbides

1964-1976

Peach 
Bottom,
USA

HTGR 
(Prismatic block) 40 MWe

Th+235U driver fuel, 
Coated fuel particles of oxide & 
dicarbides

1967-1974

Fort St. 
Vrain, 
USA

HTGR 
(Prismatic block)

330 
MWe

Th+235U driver fuel, 
Coated fuel particles, Dicarbides 1976-1989
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Thorium Utilisation : Indian Perspective

12



BARC

Indian Nuclear Fuel Resources

 232Th found abundantly in beach 
sands of Kerala and Orissa

 > 225000 tonnes of thorium

 Uranium to be mined (~ 61000 t of uranium)

 Prominent mines are located at Jaduguda, 
Bhatin, Narwapahar, Turamdih and Bagjata

Resource Quantity 
(tonne)

Energy Potential
(GWe-yr)

Uranium 61,000 328 in PHWR
42,230 in Fast Breeders

Thorium > 225,000 >155,500 in Breeders
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Three Stage Indian Nuclear Programme

Electricity

Thorium utilisation for
Sustainable power programme

U fueled
PHWRs

Pu Fueled
Fast Breeders

Nat. 
U

Dep. 
U

Pu

Th

Th

U233 Fueled
Reactors

Pu

U233

Electricity

Electricity

Stage 1 Stage 2 Stage 3

PHWR FBTR AHWR

An important role for Thorium 

Power generation primarily by PHWR
Building fissile inventory for stage 2

Expanding power programme
Building U233  inventory

U233

300 GWe-Year
42000 GWe-
Year

155000 
GWe-Year
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Experience with Thorium in India
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Summary of thorium fuel cycle experience in India

Fabrication 

J-rods of CIRUS 
ThO2 fuel for Dhruva 
Thoria fuel bundles for PHWR 
Thoria fuel assemblies for FBTR blanket

Irradiation 

CIRUS J-rod position
Dhruva regular fuel location 
PHWR initial flux flattening 
FBTR blanket 
Experimental thoria based MOX fuel pins of BWR & 
PHWR type 

Reprocessing 
J-rods of CIRUS at BARC & IGCAR
New facility PRTRF for PHWR Thoria bundles is 
being constructed at BARC 

Utilisation of U-233 PURNIMA-II liquid fuel (Uranyl nitrate solution) 
KAMINI plate type fuel 
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Test Irradiations with (Th-Pu) MOX in PWL, CIRUS

 (Th-4%Pu) MOX fuel pins of TAPS-BWR design

 (Th-6.75%Pu) MOX fuel pins of PHWR design

 (Th-8%Pu)MOX fuel pins of AHWR design
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PIE of Thoria Assemblies

 Power Peaking in the central elements
 Atom % fission = 1.25% 
 Fission products measured were 
 125Sb, 134Cs, 137Cs, 144Ce-144Pr, 154Eu, 

155Eu, 90Sr. 
 Gross activity of the bundle measured

Isotopic Composition of Discharged Uranium (%)
232U 233U 234U 235U 236U 238U

Mass Spectrometric
Analysis 0.0459 88.78 9.95 1.0 0.085 0.14

Theoretical
Prediction * 0.0491 90.556 10.945 1.07 0.0918 -
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ThO2 is more tolerant to clad failure!

 Comparison of Thoria & Urania based fuel behaviour
 Inherently stable
 Single valency
 Lower diffusivity
 Better thermal conductivity
 Higher FG retention

UO2-4%PuO2ThO2-4%PuO2 Failed ThO2-4%PuO2 Failed UO2
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Experience with 233U in India

 PURNIMA II (1984-86) 
 Experiments with uranyl nitrate solution 

containing 233U reflected by BeO blocks.

 PURNIMA III (1990-93)
 Experiments were performed with 233U-Al 

Dispersion Fuel in the form of plates
 These measurements helped in finalising the 

core of KAMINI reactor.

 KAMINI (1996)
 A 30 KW reactor based on 233U fuel in the 

form of U-Al alloy
 It is the only operating reactor in the world 

with 233U as fuel. 
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Advanced Reactor Designs using Thorium Fuel Cycle
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Thorium fuel cycles becoming attractive worldwide

 The Generation IV International Forum  (GIF)
 Two out of six nuclear energy systems selected can potentially 

use thorium fuel cycle as a breeder; a burner of actinides from 
spent fuel using thorium matrices

• Lead-cooled fast reactor (LFR) 
• Molten Salt Reactor (MSR)

 International Project on Innovative Nuclear Reactors 
and Fuel Cycles (INPRO)
 Identified a number of thorium-based fuel cycle options
 Coordinated Research Project (CRP) on Assessment of Thorium 

Fuel Cycle for Thermal and Fast Reactors
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Studies to Utilise Thorium
 Russia 

 Kurchatov Institute (VVERT reactor, MSR, HTGR), IPPE (WWER type 
reactors, FR, MSR), VINIEF, ITEF (HWR, ADS).

 USA
 PWR - Heterogeneous, seed/blanket (SBU), fuel assembly being 

designated as Radkowsky Thorium Fuel (RTF) concept
 LWR - develop a ThO2-UO2 fuel compatible with existing LWRs
 High Conversion, Boiling Water Reactor (HCBWR) concept
 Gas Turbine – Modular Helium Reactor (GT-MHR), based on thorium
 Liquid-Fluoride Thorium Reactor (LFTR) concept uses uranium and 

thorium dissolved in fluoride salts of lithium and beryllium

 Other 
 CANDU/PHWR reactors have been studied to adopt thorium cycle and 

can act as Pu incinerator 
 China - Thorium molten-salt reactor technology
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Thorium in ADS 
 ADS based systems

 Rubbia's concept (1994) of running an accelerator-driven 
thorium-based reactor (for generating less toxic waste in the 
future, compared to uranium) immersed in a liquid lead bath 
(for passive safety) may provide an elegant method of long-
lived waste transmutation

 Thorium Molten-Salt Nuclear Energy Synergetic System 
[THORIMS-NES] based on the thorium–uranium-233 
cycle.
 The energy is produced in molten-salt reactors (FUJI) and 

fissile 233U is produced by spallation in Accelerator Molten-Salt 
Breeders (AMSB), which would breed U-233 at a high rate in 
accelerator-enhanced molten-salt breeders.
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Advanced Reactor Systems in India to Utilise Thorium
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AHWR

 AHWR is  being set up as a technology demonstration  reactor 
keeping in mind the long term deployment of Thorium based 
reactors in the third phase. 
 Provides transition to Phase III of Indian Nuclear Power Programme.

 For sustainable development of nuclear energy  a number of  
issues are  to be addressed in the reactor design. 
 Enhanced safety
 Proliferation concern
 Minimise waste burden
 Maximise resource utilisation
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Advanced Heavy Water Reactor (AHWR)

AHWR is a vertical pressure tube type,
boiling light water cooled and heavy water
moderated reactor using 233U-Th MOX and
Pu-Th MOX fuel.

CALANDRIA

STEAM DRUM

REACTOR BUILDING

INCLINED FUEL
TRANSFER MACHINE

FUELLING 
MACHINE

FUEL BUILDING

GRAVITY DRIVEN
WATER POOL (GDWP)

Major Design Parameters 
Reactor power : 300 MWe with 500 

m3/day desalinated water
Moderator : Heavy water 
Coolant : Boiling light water under 

natural circulation
Coolant Channels : 452 No.

Lattice pitch : 225 mm square pitch
Fuel cluster- 54 
pins 

: (Th-Pu)O2 : 24  pins
(Th-233U)O2 : 30 pins

Fuel burn up : 38,000 MWd/Te (Avg)
Primary Shut 
Down System 

: 37 Shut off rods

Secondary Shut 
Down System 

: Liquid poison injection in 
moderator

Design Objectives
1. Thorium utilisation & Energy Security
2. Incorporation  of Passive Safety Systems
3. Plant location in a populated area
4. Electric Power output – 300 MWe
5. Design life of 100 years 
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AHWR - Schematic
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AHWR – Passive Safety Features

 Core heat removal by natural circulation during normal operation 
and shut down conditions.

 Slightly negative void coefficient of reactivity .
 Emergency Core Cooling during accidental condition (LOCA) by 

direct injection of coolant in fuel from accumulators and Gravity 
Driven Water Pool (GDWP). Core submergence following LOCA.

 Grace period of 10 days.
 Double containment.
 Containment heat removal during LOCA by vapour suppression in 

GDWP and Passive Containment Coolers suspended below GDWP.
 Containment isolation during LOCA by formation of water seal in 

ventilation ducts.
 Passive Poison Injection in moderator during overpressure 

transient.
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Selection of Fuel Material for AHWR

 Closed fuel cycle to maximise energy generation from 
thoria

 Recycling of self-generated 233U and thoria
 External fissile feed of plutonium 

 Initial Core 
 Fuel cluster has pins of (Th-Pu) MOX

 Equilibrium Core 
 Fuel cluster has pins of both (Th-Pu) MOX & (Th-233U) MOX

(Th-233U) MOX and (Th-Pu) MOX
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Fuel Cluster for AHWR
• 54 pins, 3.5m. fuel stack length
• Ø11.2mm, free standing clad
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AHWR300-LEU with (LEU-Th) MOX Fuel

•Proliferation resistance
•Use of LEU and thorium leads to 
reduced generation of Plutonium 
in spent fuel with lower fissile 
fraction and a high (~10%) 
fraction of 238Pu

•Fissile uranium in the spent fuel 
contains about 200 ppm of 232U, 
whose daughter products produce 
high-energy gamma radiation

•Waste management
•The AHWR300-LEU fuel 
contains a significant 
fraction of thorium as a 
fertile host. Thorium 
being lower in the 
periodic table, the 
quantity of minor 
actinides is significantly 
reduced. 
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Neutronics: effects of thorium in water reactors-1

Parameter Th-U233 Effect
Moderator 
temperature Coeff. 

Progressively negative with 
burnup

• Less effect on lattice design 
changes

Doppler coefficient More negative, less so with 
burnup

• Improved transient response to 
rapid severe reactivity, (hence 
power) increases 

Xenon worth Slightly less 
• Reduces reactor control needed                                               

Higher stability against Xenon 
oscillations

Fission product 
poisoning Slightly different • Only slightly  disadvantageous 

Delayed neutron 
fraction, β

Decrease with burnup is 
slightly more than all-U core 
β(U233) < β (U235)
β(U233) ~ β(Pu239)

• Similar detrimental effect on 
large reactivity insertion 
accidents 

• More rapid power decrease 
during scram
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Neutronics: effects of thorium in water reactors-2

Parameter Th-U233 Effect

Reactivity loss 
due to burnup Appreciably less 

• Less poison reactivity requirement at 
BOC 

• Burnup prediction more sensitive to 
errors

Hot to cold 
reactivity 
difference  

Smaller • No control modification needed to 
accommodate use of Th

Control 
requirements  Reduced overall

• Can reduce burnable poison 
concentration                          

• Easier to design long cycles/high burnup
cores

Local power 
peaking Somewhat less • More thermal hydraulic margins, easier 

to meet design constraints

Fertile capture 
product 

Pa-233 more important 
absorber  than Np-239

• Delays U-233 production  
• Both neutrons and U-233 are lost by 

capture
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Critical Facility for AHWR
Objective

Validation of Physics Simulation models and 
nuclear data

Features
 Thermal Neutron Flux (Ave) : 108 n/cm2/s
 Nominal Fission power : 100 W
 Core : 330 cm ID X 500 cm Ht.
 Variable lattice pitch : 20 cm to 30 cm
 Types of cores : Reference core, AHWR Core

and PHWR Core

Experiments to be performed
 First approach to criticality in all the types of cores
 Dynamic tests for the shut down device
 Measurement of critical height, level coefficient of

reactivity etc.
 Assessing coolant voiding reactivity effects
 Measurement of reaction rates and neutron spectrum
 Neutron flux profile measurement by introducing

SPNDs
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Critical Facility for AHWR
 AHWR Critical Facility has been designed for conducting lattice 

physics experiments to validate AHWR physics calculations. 
 Enough flexibility to arrange the fuel inside the core in a precise 

geometry at the desired pitch for facilitating study of different core 
lattices based on various fuel types, moderator materials and 
reactivity control devices. 

 Criticality attained in April 2008.
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High Temperature Reactors
Compact High Temperature Reactor (CHTR)-

Technology Demonstrator

• 100 kWth, 1000 °C, Portable, TRISO coated particle fuel
• Several passive systems for reactor heat removal  
• Prolonged operation without refuelling

Larger power version
can also be used as a
small nuclear power
pack to supply
electricity in remote
areas

Innovative High Temperature Reactor for Hydrogen 
Production (IHTR-H)

• 600 MWth , 1000 °C, TRISO coated particle fuel
• Combination of active and passive systems for control and cooling
• Medium life core

Status: Feasibility studies carried out.  Materials, fuel and 
experimental setups under development

Status: Conceptual design carried out
R & D programme for detailed design initiated

In addition a 5 MWth Compact Nuclear Power Pack (550 °C) is also being designed
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Compact High Temperature Reactor (CHTR)

• Very high 
temperature (1000 
°C)

• Compact
• Lead alloy cooled
• Long life core (15 

years)
• Burnup 68 GWd/te
• Passive heat 

removal
• Ceramic core 

components
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BARC Innovative High Temperature Reactor (IHTR) for 
Commercial Hydrogen Production

 600 MWth, 1000 °C, TRISO 
coated particle fuel

 Pebble bed reactor concept with 
molten salt coolant

 Natural circulation of coolant  for 
reactor heat removal under 
normal operation

 Status: 
 Reactor physics and thermal 

hydraulic designs being optimised
 Preliminary thermal and stress 

analysis carried out
 Code and experimental set-up 

under development for simulating 
pebble motion, pebble feeding 
and removal 
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Concluding Remarks
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CONCLUDING REMARKS
 Renewed interest in several developed countries on thorium fuels 

and fuel cycles and their utilization in LWR, PHWR, ACR, HTR, Fast 
Reactors, MSBR and ADS

 Thorium can play an important role in the near future for market 
conditions which can arise due to increase in uranium prices.

 Provides intrinsic proliferation resistance in an open fuel cycle.
 Has a very important role to play in India’s long-term sustainability 

of resources.
 India has demonstrated experience in all aspects of thorium fuel 

cycles 
 AHWR will demonstrate large-scale utilisation of thorium using 

existing technologies
 Commercial demonstration of technologies required for the 3rd

stage of Indian nuclear power programme
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