

### "The Road ahead for The European Spallation Source"





#### Neutrons are beautiful!



Spectrometers - Measure dynamics - What atoms and molecules do

1 - 80 meV

Cliff Shull Pretic moment Neutral



C Carlile







# Neutrons are the Swiss Army Knife of Analytic techniques



Thanks to Dimitri Argyriou



his is our



High impact publications - extended list

Chemistry of Materials, Europhys. J.E., JACS, JMB, Langmuir, Macromolecules

Nature, Nature: Materials, Nature: Physics,

PRL, PRB, PRC, PRE, Science

200

180

160



But neutrons, like diamonds, are still rather rare...





# We have to build the best facilities with the best instruments if we are to develop, understand, and harness New Materials

"The stone Age didn't end for lack of stone"



#### Ahmed Zaki Yamani

my phone, my email, my notebook, my calculator, my atlas, my weather, my camera, my star map, my music, my calendar, my address book... & my training routine for Lundaloppet!

#### Packed with new materials!





#### Neutron sources outside Europe

Resolution 5000 x 3750 px Free JPG file download www.psdgraphics.com



- There are 230 research reactors in 32 countries
- There are 5 spallation sources in 4 countries









SN







6. 生体ダイナミクス解析装置

7. 高分解能型チョッパー分光器

8. 強相関電子系物質ダイナミクス解析装置

#### J-PARC





建設中のJ-PARC中性子実験施設の23本のビームラインに建設予定の装置(一部) [資料提供]J-PARCプロジェクトチーム



# Fast forward to this in 2019







#### EUROPEAN SPALLATION SOURCE DE SS cadines

- F.S.S will be the world's best source of slow neutrons
- ESS will not produce its first neutrons until 2019
- ESS will cost 1479 M€<sub>2008</sub> to construct

### FSS is different

- SNS, JPARC & 1515 produce neutrons in 1 to 100 µsec bur.
- ESS will produce neutrons in 2.8 msec bursts
- | | is a continuous neutron source









#### ESS-some numbers



- Superconducting Proton Linear Accelerator
  - 2.5 GeV Proton Energy
- 50mA (2mA) peak (average) proton current
  - 357 kJ/pulse
- 2.86 msec pulse length
  - 14 Hz pulse frequency
- 71.4 msec periods between pulses
  - 5MW proton beam power
- Single Target Station
  - Rotating Tungsten, helium cooled
- 22 instruments
  - · High reliability, low losses

1 metre



#### "If we wait for the moment when everything is ready, we shall never begin" Ivan Turgenev

Full Specification





#### The ESS Design Update Phase 2010 - 2012





# Linear Accelerator layout



|           | Length (m) | Input Energy<br>(MeV) | Frequency<br>(MHz) | Geometric β | # of<br>Sections | Temp<br>(K) |
|-----------|------------|-----------------------|--------------------|-------------|------------------|-------------|
| RFQ       | 4.7        | $75 \times 10^{-3}$   | 352.2              |             | 1                | ≈ 300       |
| DTL       | 19         | 3                     | 352.2              |             | 3                | ≈ 300       |
| Spoke     | 58         | 50                    | 352.2              | 0.57        | 14 (2c)          | ≈ 2         |
| Low Beta  | 108        | 188                   | 704.4              | 0.70        | 16 (4c)          | ≈ 2         |
| High Beta | 196        | 606                   | 704.4              | 0.90        | 15 (8c)          | ≈ 2         |
| HEBT      | 100        | 2500                  |                    |             |                  |             |

#### H. Danared, M. Eshraqi, A. Ponton, ESS



# The Accelerator work is gaining momentum

IPN Orsay - Mats Lindroos & Sebastian Bousson Superconducting accelerating cavities





#### Hydrogen in Metals

#### Hydrogen in Palladium



#### Spotlight on Science



- Interstitial-lattice gas
- Dense
- Mobile
- Easily poisoned

• Mixed phases
- metallurgical damage





#### The 50K transition in β-phase palladium deuteride observed by neutron scattering

IS Anderson, DK Ross and CJ Carlile Department of Physics, Birmingham University, Birmingham B15 2TT, UK

#### **Abstract**

A first direct observation of the '50K' structural transition in beta -phase palladium hydride has been made using neutron scattering. This observation, of a superlattice reflection at (1/210), allows us to conclude that the transition is essentially an order-disorder transition involving a local rearrangement of deuterium atoms and vacancies between the eight indifferent interpenetrating FCC sublattices having twice the original lattice parameter. The low intensity of the reflection corresponds to a small value for the long-range order parameter and its dimensions in reciprocal space indicate that the long-range order only extends to about 25 Å.





## Target Station Design Concept

Three options which can work well.

A baseline and a comparative option are selected.

| Rotating      | Liquid metal |              |  |
|---------------|--------------|--------------|--|
| Helíum cooled | Water cooled | Lead Bismuth |  |
| Tungsten      | Tungsten     | Eutectic     |  |



























### Possible Instrument Layout





The Su ESS



ADS and Thorium systems,



## Innovative Energy Policy

#### ESS Energy Management Strategy

Re



:em

Aim to reduce operations costs by ~9 M€ p.a.

vvaste neat re-use

ADS and



# This is how it is usually done



Heating Supply

Carbon Dioxide: 15,000 tonne/year emitted



emitted



# SNS Energy flow

Today's most powerful spallation source



#### This is how ESS will do it in 2020 EUROPEAN SPALLATION SOURCE Link to the grid Renewable Responsible Carbon Dioxide: Carbon Dioxide 120,000 tonnes/year 30,000 tonnes/year saved saved Recyclable Carbon Dioxide: 15,000 tonnes/year saved CJ Carlil

14th December 2011

ADS and Thorium systems, Trombay



# ESS Energy concept 2011

The world's first sustainable large-scale research facility?





ESS's Cooling water becomes someone else's Heating water

ADS and Thorium systems, Trombay





14th December 2011



#### Conclusions: ESS energy solution

• Electricity consumption is reduced from 350 GWh to 250 GWh, partly because of smart cooling systems and building technology.



n.

5M€/year.

na and Eslöv





