Present Status of Infrastructure Facilities for SCRF Cavity Development

S C Joshi, S Raghavendra, A Bose, G V Kane, S K Suhane, S K Chauhan, S Kokil, A Puntambekar, N K Sharma and P D Gupta Raja Ramanna Centre for Advanced Technology, Indore, INDIA

2nd International Workshop on

ACCELERATOR-DRIVEN SUB-CRITICAL SYSTEMS & THORIUM UTILIZATION **Mumbai, India** December 11-14, 2011

Development of Superconducting Cavities and Associated Technologies for High Energy Accelerators and their Applications

Objectives :

- Technology development and setting up of an infrastructure for the SCRF cavity fabrication, chemical processing, cleaning, assembly and testing at required accelerating gradient for accelerator applications
- To establish Cryogenic Infrastructure to operate large systems operating at liquid helium environment
- Experimental research in bulk and thin film superconducting materials for building accelerating cavities with high gradient and high quality factor

New Facilities Planned at RRCAT

RR

SCRF cavity fabrication Facilities: 120 Ton Hydraulic Press, Nb machining, EBW Machine etc.

Chemical & thermal processing facilities EP/BCP/CBP, HPR & Annealing Furnaces etc.,

Cavity Inspection Facilities 3-D CMM, UTM, Optical inspection bench, 3-D confocal microscope, SIMS

Cavity RF Measurement & Tuning Facility Half Cell, dumbell and multi-cell cavity frequency measurement Cavity Frequency & field tuning machine (under design)

Assembly & testing set up. Clean-room, Test cryostats, RF sources etc.

Cavity Fabrication Facility

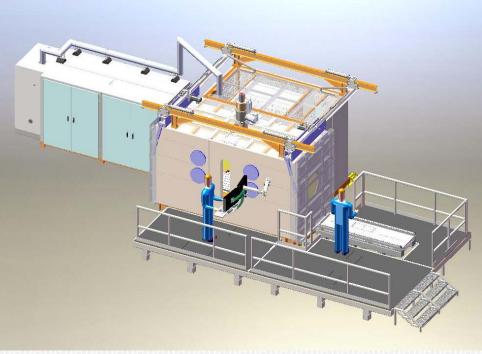
Forming

Inspection

Machining

Formed Niobium Half cell

120 T – HYDRAULIC PRESS



Electron Beam Welding Machine

Major specifications of EBW Machine

	4 = 1 + 4
Beam power	15 kW
Gun Voltage	90 to 150 kV
Duty cycle	100%
Beam current range	100 mA
Beam current setting	0.1 mA
resolution	
Beam oscillations	1 – 1000 Hz or more
Beam focus diameter	0.25 mm
Inner size of chamber	3650 x 1500 x 1800 mm ³
X-Y table size	1780 m x 710 mm
Vacuum ready	< 1x10 ⁻⁴ mbar in 15 min
pressure	
Ready for welding	< 1x10 ⁻⁶ mbar in 60 min
pressure	

Inspection, Measurement & Cavity Test Facility

3D CNC Coordinate Measuring Machine

<u>Applications</u> :

Dimensional inspection of SCRF cavity components like half cells, dumb-bells, multi-cells etc

<u>Accuracy</u> :

1.6 + L/400 microns

Commissioning :

In progress

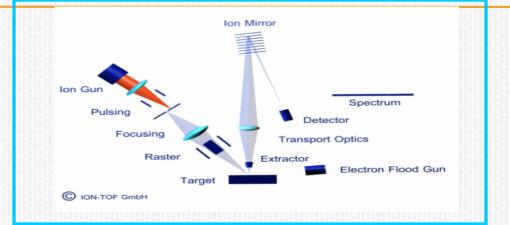
Universal testing machine for evaluation of RRCAT mechanical properties

Instron UTM Model: 5569

- **×** Load: $\pm 50 \text{ kN}$
- ***** Testing speed: 0.001 500 mm/min
- ***** Accuracy of Load: $\pm 0.5\%$ for 0.5 50 kN
- Strain measurement Accuracy: ASTM E 83 Class B or better
- × Total cross head travel: 1500 mm

Measurements:

- •Yield strength, ultimate tensile strength
- •Elongation
- •Plastic strain ratio, Strain hardening exponent.
- •Cavity Stiffness measurement

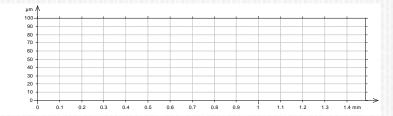


RRCAT Secondary Ion Mass Spectrometer (SIMS)

To develop understanding of impurity distribution near the top layer (~100 - 200 nm) of niobium by 2-D, 3-D ion mapping of the impurities.

Quantification of the elemental impurity distribution using niobium standards .

SIMS has been commissioned Nov - 2011.


3D Laser scanning confocal microscope

Imaging Method	3-D Laser Scanning
	Confocal system
Z - Resolution	≤ 10 nm
(Depth)	
Z - Measurement	12 nm
repeatability	
Z – measurement	10 mm
range	
X-Y Resolution	0.12 μm

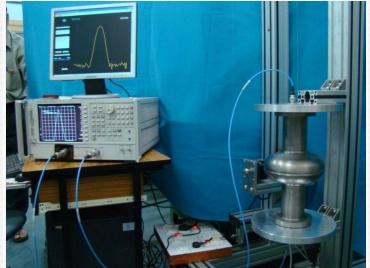
RRCAT

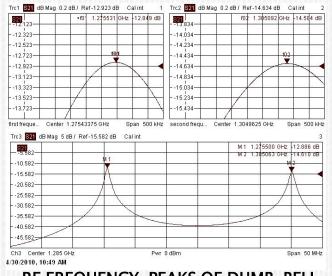
Olympus LEXT OLS 4000 Laser scanning confocal microscope

Cavity Optical Inspection

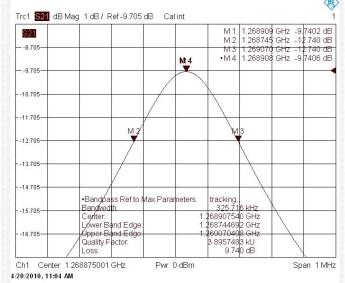
Cavity internal surface measurement using a small digital CCD camera with magnification 10X-200X

Motorized Optical inspection bench for cavity internal inspection for1.3 GHz -9 cell SCRF cavity




RF MEASUREMENT SETUP

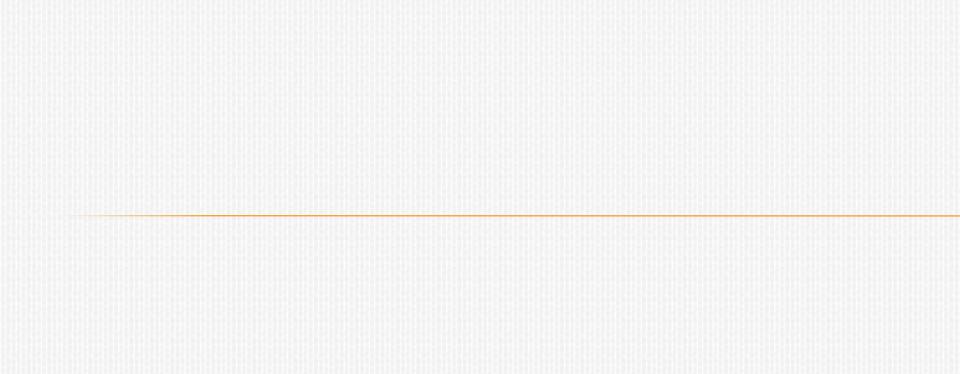
RF FREQUENCY MEASUREMENT SETUP



RF MEASUREMENT SET UP FOR FREQUENCY AND FIELD DISTRIBUTION

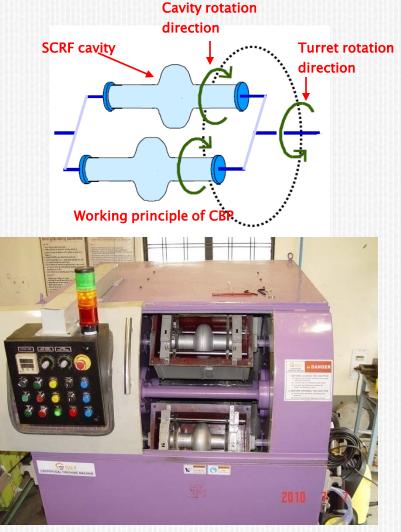
RRCAT

RF FREQUENCY PEAKS OF DUMB-BELL



RF FREQUENCY PEAKS OF SINGLE CELL CAVITY

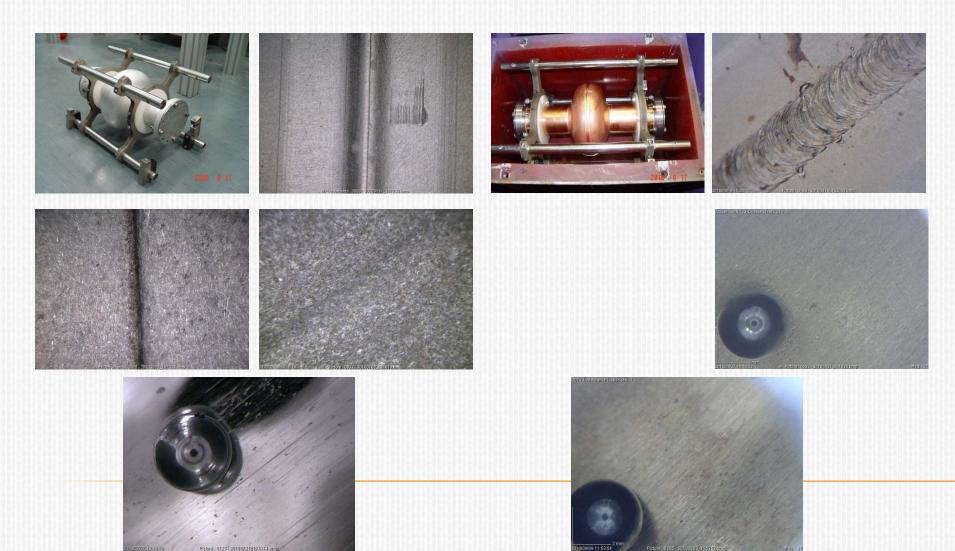
Cavity processing facility


Main features of CBP machine

 Turret and Barrel rotate in opposite direction

Turret speed - 0 - 200 rpm (variable)
Barrel speed - 0 - 200 rpm (variable)
Barrel size - 320 X 320 X 500 mm

Cavity ready for mounting in CBP m/c


Cavities mounted in CBP machine

Initial Trial Results of CBP

ALUMINUM CAVITY

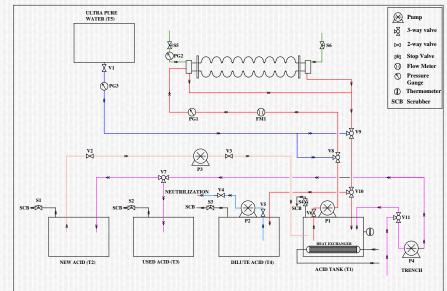
COPPER CAVITY

Ultrasonic cleaning facility

Ultrasonic cleaner for single cell cavity & small components

RRCAT

Ultrasonic cleaner for 9 cell cavities


RRCAT Development of Electro polishing setup

 Bench for electro-polishing of SCRF cavity has been developed, it can process 1.3 GHz -9 cell cavity.

The stand is capable of :

- Rotating the cavity at 2-10 rpm.
- Holding the cavity in horizontal position during processing & in vertical position during draining/ rinsing and for loading the cathode
- connect power supply using Slip ring with 4 carbon brushes
- The flow circuit has been assembled and tested.
- A 25V 1000A DC Power supply has been procured.

RRCAT Electro-polishing of Single cell Aluminium cavity

After fabrication

(without any

After Barrel polishing

After 30 micron Electropolishing

processing) Surface roughness of 50nm was obtained in the beam pipe after electro-polishing

High Pressure Rinsing Setup

Features:

- Cavity / wand Rotational speed: 2-20 RPM
- Vertical Stroke: 1300 mm
- Vertical movement speed:
 60 mm/min
- Ultra-pure water jet. pressure: 80 - 100 bar

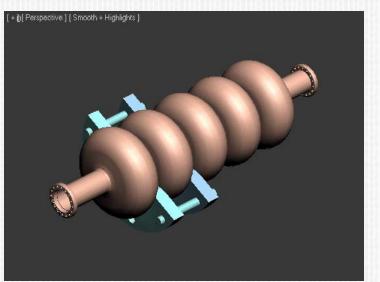
Ultra Pure Water Plant

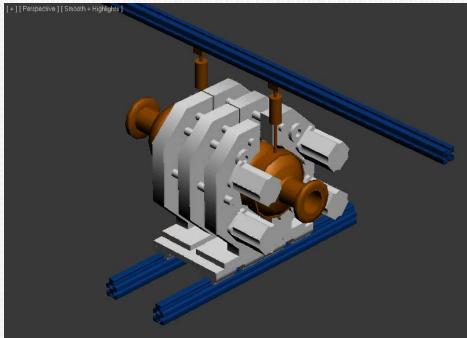
High Pressure Rinsing Set up in Clean enclosure (Class 100) High Pressure Cleaning of dummy cavity

THERMAL PROCESSING OF CAVITIES

Specification of High Vacuum Furnace		
Orientation	Horizontal	
Temperature range	1400°C Max	
Working Vacuum	<1 x 10 ⁻⁷ mbar (600°C -1000°C) <1 x 10 ⁻⁶ mbar (> 1000°C)	
Working Volume	Diameter 825mm Depth 1500mm	

The furnace is under procurement





SCRF Cavity Tuning Machine

Tuning of SCRF Cavity

 A multicell elliptical accelerating cavity requires a "flat" electrical field profile at the target π-mode frequency

- Emin/Emax>0.98
- Cavity requires cell to cell tuning due to shape deformation during fabrication, material removal at various stages of polishing & also deformation during thermal processing.
- Cavity must be straight & requires an alignment

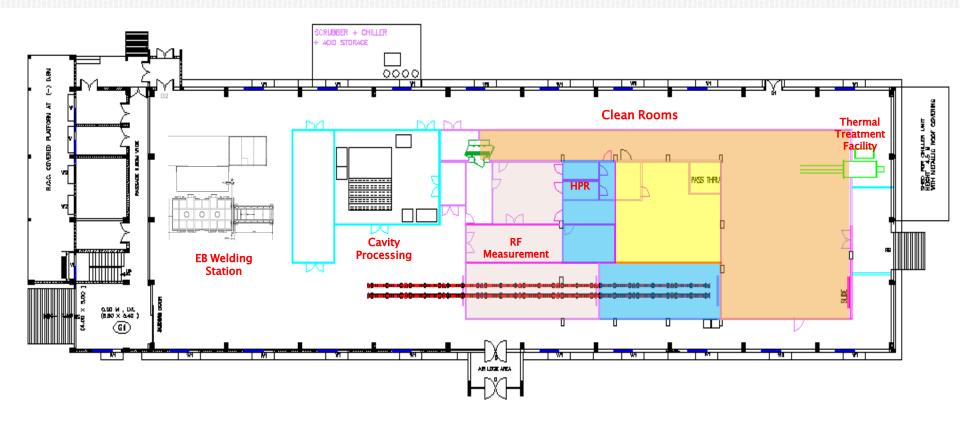
Building to House SCRF Cavity Infrastructure Facility

Building for SCRF Cavity Development

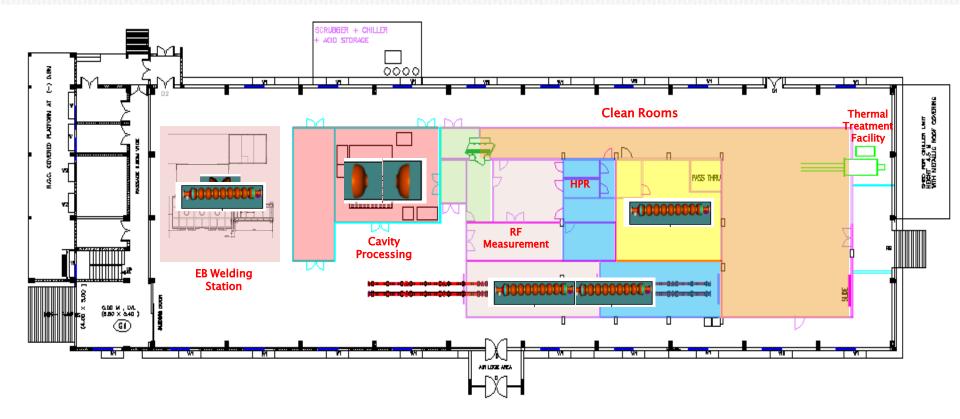
Cavity Fabrication, Assembly & Processing Building

The building will house clean rooms, Electron Beam welding machine. High Vacuum Annealing Furnace, Electropolishing setup, Centrifugal barrel polishing machine, RF measurement etc.
Building is ready.

Lab Building


• Facility being set up: CMM, SIMS, material testing facility, thin film deposition facility etc .

SCRF Cavity Processing Building (Equipment Layout)



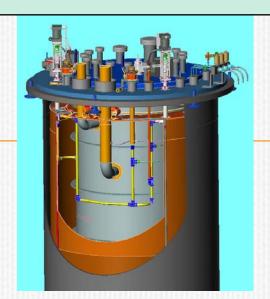
SCRF Cavity Movement in SCRF Building

RRCAT

After ER welding To RE Measurement and After sunning as sembly surro cryomodule Assembly for fabricating unding cerreavity bells



Cavity testing facility



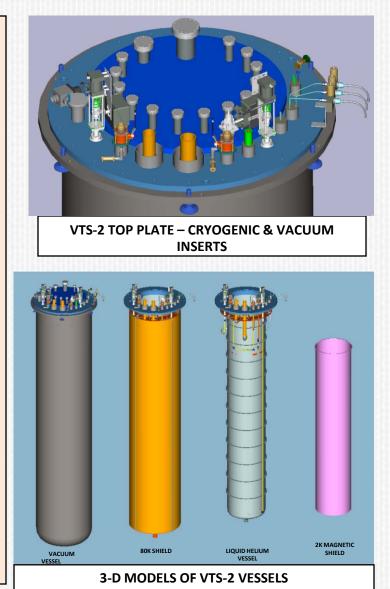
Development of 2K Vertical Test Stand

Work was taken up under IIFC

Outside diameter of Vacuum Vessel + outside magnetic shield	≤ 58 inches	
Length of Vacuum Vessel (from top flange to crown of head)	211.375 inches	
Clear aperture of the Helium Vessel	34 inches	
Length of Helium Vessel (from top flange to crown of head)	191.35 inches	
80K Shield sits in space between Helium Vessel OD & Vacuum Vessel ID		

Development of 2K Cryostat for VTS

- Liquid Helium Vessel
- 80K shield
- Vacuum Vessel
- Top Insert Plate
- Magnetic shielding (2K + room temperature)
- Piping layout for liquid helium
- **■3-D model of the complete VTS-2 assembly**


Three VTS cryostats are under fabrication at US vendor under joint supervision of engineers from Fermi Lab and RRCAT.

Expected delivery schedule : March 2012.

Building to house VTS at RRCAT is under construction and expected to be ready by December 2011

Cryogenics system under process (P K Kush & Team)

Components of RF and DAQ system fro RRCAT VTS is under process and expected to be ready by Dec 2011. (P Shrivastava & Team – RF and T A Puntambekar & Team – DAQ)

Pictures of VTS under fabrication at RRCAT manufacturer (in USA)

Thank You

